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ABSTRACT
Pedestrian trajectory prediction is an important module in au-
tonomous vehicles (AVs) to ensure safe and effective motion plan-
ning. Recently, many deep learning algorithms that achieve near
real-time trajectory predictions have been developed. However,
people in the artificial intelligence (AI) ethics community have
raised critical concerns about the bias and fairness of many general
deep learning algorithms. For example, most pedestrian trajectory
data is collected from majority populations, and models learned
from this data may not generalize well to the heterogeneous needs
and behavior patterns of different pedestrian groups, especially
for vulnerable pedestrians like the disabled, the elderly, and chil-
dren. Biases present in trajectory prediction algorithms could mean
that pedestrians from certain vulnerable demographics are more
likely to be involved in vehicle crashes. In this work, we test two
state-of-the-art pedestrian trajectory prediction models for age and
gender biases across three different datasets. We design and utilize
novel evaluation metrics for comparing model performance. We
find that both models perform worse on children and the elderly
compared to adults. However, their performance is similar between
men and women. We identify potential sources of these biases, as
well as discuss several limitations of our study. Our future work
will consist of testing more models, refining our evaluation metrics,
further differentiating the dataset bias from the algorithmic bias,
and mitigating the algorithmic biases.

CCS CONCEPTS
• Social and professional topics→ Age; Gender; • Computing
methodologies → Machine learning.
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1 INTRODUCTION

Figure 1: This figure is an exaggerated conceptual illustration
that shows the differences in pedestrian walking patterns
across different age groups.

Pedestrian safety remains a critical challenge in current trans-
portation systems. In the US, fatal pedestrian crashes have increased
by nearly 50% over the past decade [27]. However, experts in sus-
tainable transportation argue that these traffic accidents are not
really "accidents," as they stem from systemic inequalities ingrained
in our society [30]. Data shows that children, the elderly, men, peo-
ple with low income, the homeless, and people of color are involved
in far greater pedestrian-vehicle crashes compared to the general
population [1, 15, 20, 23].

AVs are expected to change the interaction between pedestrians
and vehicles thanks to their advanced and precise control technol-
ogy. In recent years, various pedestrian-vehicle collision prevention
systems have been proposed by detecting pedestrians and predict-
ing future trajectories using data sensed from on-board cameras
and machine learning algorithms [24, 36]. With these technolo-
gies, AVs can effectively detect pedestrians and react to potential
accidents. For example, Waymo claims that the cameras in their
5th-generation Waymo Driver can recognize pedestrians and sign-
posts up to 500 meters away [16]. These pedestrian perception
algorithms heavily rely on sensed data and high-capacity models
to learn complex pedestrian behavior patterns.

Bias and lack of fairness are critical problems that exist in many
AI systems today [2, 22, 31, 35]. With the development of the Inter-
net of Things, various cameras and smart devices are deployed
on vehicles to capture the data from the surrounding environ-
ment [7, 38, 39]. However, due to the constrained mobilities of
vulnerable road users, data from vulnerable pedestrians, such as the
elderly and children, is often limited. These vulnerable pedestrians
have distinct distribution patterns compared to other pedestrian
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groups [9]. For example, children are more likely to exhibit unpre-
dictable behaviors [10], and elderly pedestrians on average walk
slower than the general population [19], as shown conceptually
in Figure 1. Additionally, men tend to display more risky and im-
pulsive behaviors than women [14]. The data scarcity and distinct
distributions of these underrepresented and disadvantaged pedes-
trian groups will make their data minor “mode" or even “out-of-
distribution" compared to the huge amount of training data from
other pedestrian groups. This will lead to larger prediction errors
for disadvantaged groups during the testing stage. Error-prone de-
tection and trajectory prediction of vulnerable pedestrians may
cause discriminatory decision-making against these groups, com-
promising their safety.

Previous works exploring biases in AV perception primarily
focused on pedestrian detection. Hirota et al. [3] and Kogure et al.
[17] found that state-of-the-art models had lower detection rates
for children compared adults. Wilson et al. [37] found that model
detection rates were higher for lighter-skinned people compared
to darker-skinned people. To our knowledge, we are the first to
investigate biases specifically in pedestrian trajectory prediction.

In this work, we explore biases in pedestrian trajectory prediction
algorithms. Our contributions in this work can be summarized as
follows:

• We design a pipeline for evaluating system fairness in pedes-
trian trajectory predictions and provide insights into the
discriminatory system behaviors.

• We design and utilize novel evaluation metrics for quanti-
fying the system fairness of general pedestrian trajectory
prediction systems across different pedestrian groups, by
differentiating the dataset bias and algorithmic bias.

• We test our metrics on state-of-the-art models using multiple
widely utilized datasets. We find that state-of-the-art models
perform worse on child and elderly pedestrians compared to
adults. However, we found no clear disparity between men
and women.

In Section 2, we introduce our datasets, models, fairness metrics,
and evaluation pipeline. In Section 3, we compare and analyze the
performance of the models across different demographics, discuss
the limitations of our study, and plan our future work.

2 METHODS
In this section, we begin by giving a general overview of trajectory
prediction and algorithmic fairness. Next, we introduce our datasets
and models. Lastly, we explain our fairness metrics and evaluation
pipeline.

2.1 Overview
2.1.1 Trajectory Prediction. Predicting future trajectories equips
AVs with the necessary information to plan safe paths through com-
plicated and interactive environments, avoiding crashes or near
collisions. However, trajectories can be difficult to analyze due to
various variables that influence pedestrians in real-time. In the past,
researchers tried modeling pedestrian behavior based on simple
rules and mechanics [4, 13]. However, the rise of deep learning
has led to a transition from physics-based models to data-driven
models. Data for trajectory prediction is usually in the form of

video, and it is often collected from an on-board camera or from a
bird’s eye point of view. The frames of relevant video clips are then
annotated with bounding boxes surrounding the pedestrians. At
time 𝑡 , the trajectories in the past 𝜏 frames can be represented as
𝑋𝑡 = [𝑥𝑡−𝜏+1, 𝑥𝑡−𝜏+2, ..., 𝑥𝑡 ], where 𝑥𝑡 is the bounding box coordi-
nates of a pedestrian. The goal of trajectory prediction is to predict
the future bounding box coordinates 𝑌𝑡 = [𝑦𝑡+1, 𝑦𝑡+2, ..., 𝑦𝑡+𝛿 ] in
the next 𝛿 frames.

2.1.2 Algorithmic Fairness. Algorithmic fairness is a topic that has
sparked the interest of the AI community recently. However, there
is still no universal definition of fairness that is applicable to every
situation. Out of the many prominent definitions of fairness, the
one we are interested in for this work is statistical parity (also
known as demographic parity). Statistical parity is satisfied under
the following condition:

𝑃 (𝑌 |𝐴 = 𝑎) = 𝑃 (𝑌 |𝐴 = 𝑏) (1)

where 𝑌 is the predictor and 𝑎, 𝑏 are different groups. The probabil-
ity of a positive outcome should be the same regardless of whether
the person is in a protected or unprotected group [33]. Statistical
parity in the context of our work would mean that the trajectory
prediction accuracy is the same across all pedestrian demographics.

2.2 Datasets
We use three datasets in our study, each of them captured through
a single on-board camera: Joint Attention in Autonomous Driving
(JAAD) [18], Pedestrian Intention Estimation (PIE) [26], and Tra-
jectory Inference using Targeted Action priors Network (TITAN)
[21]. The JAAD dataset was filmed mostly in Kremenchuk, Ukraine,
with some other filming done across cities in Canada, Germany,
the US, and Ukraine. It is annotated at 30 Hz and contains a total of
2580 pedestrians. However, only pedestrians that were close to the
on-board camera (648 pedestrians, roughly 25% of all pedestrians)
have age and gender labels. The PIE dataset was filmed entirely in
Toronto, Canada, and it is annotated at 30 Hz. It contains a total
of 1835 pedestrians, all of which have age and gender labels. The
TITAN dataset was filmed entirely in Tokyo, Japan, and it is an-
notated at 10 Hz. It contains a total of 8588 pedestrians, and all of
them have age labels but no gender labels. We specifically chose
these datasets because to our knowledge, they are the only major
datasets designed for trajectory prediction that have any pedestrian
demographic labels.

2.3 Models
We look at two state-of-the-art models in this work, BiTraP [40] and
SGNet [34]. Both of these models have several variations. BiTraP is
a goal-conditioned bi-directional multi-modal trajectory prediction
model based on a conditional variational autoencoder. BiTraP has
a deterministic version, BiTraP-D, and two multimodal versions,
BiTraP-NP and BiTraP-GMM. SGNet also predicts future trajecto-
ries based on goals, but instead of using a single, long-term goal like
BiTraP, it uses a stepwise goal estimator that predicts successive
goals in the future. SGNet has a deterministic version, SGNet, and
a multimodal version, SGNetCVAE . We specifically chose these two
models because they are currently the two best-performing models
on JAAD and PIE, and they have open-source code available.
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2.3.1 Deterministic Models. Deterministic models predict one sin-
gle trajectory based on its observations. We look at BiTraP-D and
SGNet in this work. In the future, we also plan on testing PIEtraj
[26].

2.3.2 Multimodal Models. Although there is one single trajectory
that a pedestrian ends up taking, there are multiple possible trajec-
tories that a pedestrian may take at any given time. This is why
multimodal models have been gaining popularity recently. Multi-
modal models predict multiple possible trajectories based on their
observations. In this work, we look at BiTraP-NP. In the future, we
also plan on testing BiTraP-GMM and SGNetCVAE .

2.4 Fairness Quantification Metrics
We define a "track" to be the bounding box coordinates of a pedes-
trian over a certain time interval. Each track has a length of two
seconds and consists of two components: the first 0.5 s of the track
are for observing, and the next 1.5 s are for predicting.

The trajectory evaluation metric we use for evaluating the ac-
curacy of a prediction at a single frame is the mean squared error
(MSE) of the bounding box coordinates of the pedestrian. MSE
is the standard trajectory evaluation metric for many pedestrian
trajectory prediction models.

Fairness evaluation metrics quantify the difference in a model’s
performance over different demographic groups. We design and
utilize three different fairness evaluation metrics: the mean MSE,
the Mann-Whitney U Test, and the Wasserstein distance.

Mean MSE. Traditionally, model performance on the JAAD and
PIE datasets has been measured using three variations of the mean
MSE across all tracks: 1) mean of the bounding box MSE averaged
over the first 0.5 s, 1.0 s, and 1.5 s, 2) mean of the bounding box
center MSE (CMSE) averaged over 1.5 s, and 3) bounding box center
final MSE (CFMSE) at 1.5 s. However, the MSE error distributions
are highly skewed right as shown in Figure 2. The means of these
error distributions are heavily influenced by outliers, and thus they
may not be reflective of a model’s true performance. As result, we
propose two additional evaluation metrics.

Figure 2: MSE (1.5s) error distribution of BiTraP-D perfor-
mance on the PIE dataset. The skewed right trend is consis-
tent for all models across all datasets. Note that some MSE
(1.5s) values here go up to nearly 100,000, but we only plot
up to 3000 in this figure.

Mann-Whitney U Test. The Mann-Whitney U Test is a non-
parametric test that determines whether two independent samples
derive from the same population. As stated before, the error dis-
tributions in our study are not normally distributed, so we cannot
use a parametric test like the t-test. We conduct three different one-
sidedMann-Whitney U Tests with the following null and alternative
hypotheses:

• Children vs. Adults
𝐻0: Model performance on children = adults
𝐻1: Model performance on children < adults

• Elderly vs. Adults
𝐻0: Model performance on the elderly = adults
𝐻1: Model performance on the elderly < adults

• Men vs. Women
𝐻0: Model performance on men = women
𝐻0: Model performance on men < women

Wasserstein Distance. The Wasserstein distance is a distance
function between distributions. It is essentially the amount of
"work" required to transform one distribution into another. The
Wasserstein distance between two distributions 𝑢 and 𝑣 is defined
as follows:

𝑊 (𝑢, 𝑣) := inf
𝜋 ∈Γ (𝑢,𝑣)

∫
R×R

|𝑥 − 𝑦 |𝑑𝜋 (𝑥,𝑦) (2)

where Γ(𝑢, 𝑣) is the set of distributions on R × R whose marginals
are 𝑢 and 𝑣 on the first and second factors respectively. Zhao [41]
proves that if a regressor is individually fair, which means the re-
gressor treats similar individuals similarly, the gap of the regressor’s
accuracy disparity across groups with different sensitive attributes
can be exactly measured by the Wasserstein distance. Therefore, we
utilize the Wasserstein distance between the error distributions of
children and adults, elderly and adults, and men and women to mea-
sure unfairness in model predictions across different demographic
groups.

2.5 Fairness Evaluation Pipeline
Wewalk through our pipeline for evaluating algorithmic fairness in
this subsection. For each dataset, we generate trajectory tracks for
the train, validation, and test splits using a track overlap ratio of 0.5.
We train eachmodel on each dataset separately using all pedestrians
in the training tracks, regardless of demographic. The testing tracks
are split into groups according to pedestrian demographic. We test
our trained model on each demographic group separately. For de-
terministic models, testing on a group that contains 𝑛 test tracks
results in the vector 𝑑 = [𝑑1, 𝑑2, ..., 𝑑𝑛], where 𝑑𝑛 is the bounding
box MSE on track 𝑛. For multimodal models, testing on a group
that contains 𝑛 test tracks results in the matrix 𝐸 = [𝑒1, 𝑒2, ..., 𝑒𝑛],
where 𝑒𝑛 = [𝑒𝑛1, 𝑒𝑛2, ..., 𝑒𝑛20] is a vector containing the bounding
box MSEs of 20 randomly sampled trajectory predictions on track
𝑛. Following standards set by [12, 28, 29], we use the best-of-20 ap-
proach for multimodal models by extracting the best prediction on
each track, turning the matrix 𝐸 in the vector𝑚 = [𝑚1,𝑚2, ...,𝑚𝑛],
where𝑚𝑛 is the minimum MSE value from 𝑒𝑛 . Compared to deter-
ministic models, the MSE values for multimodal models tend to be
much lower because we essentially cherry-pick the most accurate
trajectory prediction out of 20 predictions generated.
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Implementation Details. For evaluation on JAAD and PIE, we
use the pretrained model checkpoints publicly provided by each
model’s respective authors. For evaluation on TITAN, we train each
model from scratch using each model’s default hyperparameters,
as none of the models have previous benchmarks on TITAN.

3 RESULTS AND DISCUSSION
In this section, we first expose biases in our datasets by show-
ing their demographic distributions. Then, we test state-of-the-art
model performance using the evaluation metrics introduced in Sec-
tion 2.4 and provide insight into our results. Finally, we discuss the
limitations of our study and outline our future work.

3.1 Dataset Bias
Biased data often leads to biased algorithmic outcomes [22]. Find-
ing good quality unbiased data is a common challenge in machine
learning, and our work is no exception. All three of our datasets
are biased towards adults. This is somewhat expected, as in most
societies, the population of adults is greater than the population
of children and the elderly. However, there is an even greater per-
centage of adults in our datasets than what is expected according
to their respective filming locations. Table 1 shows the pedestrian
age distributions for each dataset and compares them to their ex-
pected age distributions. Some reasons for this disparity may be
that children are likely to be at school, and the elderly are less
likely to take walking trips compared to younger age groups [23].
These reasons would decrease the probability that a child or elderly
pedestrian would make an appearance in one of the dataset videos.
There is probably annotation bias as well. Many pedestrians in the
videos are far away from the on-board camera, making it difficult
to see their features. In previous work, Wilson et al. [37] found its
annotators to have inconsistencies while labeling pedestrians as
light-skinned or dark-skinned. It makes sense that there would also
be inconsistencies in labeling age, which is arguably more subjec-
tive than skin tone. The annotators could have labeled pedestrians
as adults when they were in doubt.

3.2 Algorithmic Bias
Algorithmic bias is the bias that is added purely by the algorithm
itself without any bias in the data. In our case, we don’t know how
much of the bias we measure actually stems from the algorithms
because the models are all trained on biased input data, as we
showed in Section 3.1. We compare model performance between
age and gender using the mean MSE in Table 3, the Mann-Whitney
U test in Table 4, and the Wasserstein distance in Figure 3. In the
future, we will try to create unbiased datasets to train the models.

3.2.1 Age Bias. Our results show convincing evidence that there is
a disparity in state-of-the-art pedestrian trajectory predictionmodel
performance between age groups. Models tend to perform worse
on child and elderly pedestrians compared to adult pedestrians.

1) Results for BiTraP-D: The mean MSE is the highest on children
over all three datasets. The mean MSE is higher on children com-
pared to adults by an average of 23%, 217%, and 25% over JAAD,
PIE, and TITAN, respectively. The Mann-Whitney U Test p-values
comparing elderly and adults are all statistically significant (they
are all well under 10−15) over PIE and TITAN.

Table 1: Age demographic breakdown of JAAD, PIE, and
TITAN datasets. We define children to be ages 0-14, adults
to be ages 15-64, and elderly to be ages 65 and above. The
JAAD dataset was filmed in 5 different cities across Ukraine,
Canada, Germany, and the US, but 80% of the clips were
filmed in Kremenchuk, Ukraine. We could not find age de-
mographic data for Kremenchuk specifically, so we report
the expected age demographics of Ukraine as a country.

Dataset Statistic Children Adults Elderly
# of pedestrians 47 509 92

JAAD % of dataset 7.3% 78.5% 14.2%
% expected [8] 15.1% 69.3% 15.6%

# of pedestrians 17 1640 185
PIE % of dataset 0.9% 89.0% 10.0%

% expected [11] 14.2% 68.1% 17.6%

# of pedestrians 116 7872 506
TITAN % of dataset 1.4% 91.7% 5.9%

% expected [6] 11.5% 65.7% 22.8%

Table 2: Gender demographic breakdown of the JAAD and
PIE datasets. We expect around a 50% distribution for both
genders.

Dataset Statistic Male Female
JAAD # of pedestrians 277 355

% of dataset 43.8% 56.2%

PIE # of pedestrians 976 866
% of dataset 53.0% 47.0%

2) Results for SGNet: The mean MSE is the highest on children
over JAAD and PIE and the highest on the elderly over TITAN.
Over PIE, the mean MSE is on average 254% worse on children and
42% worse on the elderly, compared to adults. Like BiTraP-D, the
SGNet Mann-Whitney U test p-values comparing the elderly and
adults are all significant over PIE and TITAN.

3) Results for BiTraP-NP: ThemeanMSE is the highest on children
over PIE and the highest on the elderly over TITAN, and p-values
comparing adults and elderly are all significant over PIE and TITAN.
The mean MSE over JAAD is actually the highest on adults. While
we are unsure of the reasons behind this, it is important to remember
that BiTraP-NP is a multimodal model, meaning that for each track,
it cherry-picks the trajectory with the lowest MSE error out of 20
randomly generated trajectories. This would not be possible in a
real-world situation, as autonomous vehicles will not know the true
future trajectory of a pedestrian. We are looking into alternatives
to the standard best-of-20 approach for multimodal models.

The majority of p-values comparing children and adults over PIE
and TITAN are not significant even though there is a big difference
between their respective mean MSE values. This is likely due to the
small sample size of children in these datasets. As Table 1 shows,
children only make up 0.9% of the pedestrians in PIE and 1.4% of
the pedestrians in TITAN. However, one trend that we notice is
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Table 3: Model performance on different demographics in terms of mean MSE/CMSE/CFMSE. The worst performing age group
and gender are bold.

JAAD PIE TITAN

MSE CMSE CFMSE MSE CMSE CFMSE MSE CMSE CFMSE
Method Group 0.5s / 1.0s / 1.5s 1.5s 1.5s 0.5s / 1.0s / 1.5s 1.5s 1.5s 0.5s / 1.0s / 1.5s 1.5s 1.5s

Child 185 / 848 / 2826 2722 10945 85 / 468 / 1596 1572 7291 289 / 1216 / 4218 4106 17161
Adult 182 / 662 / 2025 1900 7566 38 / 152 / 490 462 1880 360 / 1134 / 3120 2931 10421

BiTraP-D [40] Elderly 147 / 410 / 1134 1040 4005 67 / 234 / 673 617 2346 387 / 1374 / 4004 3773 13667

Male 191 / 611 / 1775 1641 6552 43 / 160 / 490 454 1844 - / - / - - -
Female 171 / 661 / 2064 1953 7806 39 / 162 / 537 512 2127 - / - / - - -

Child 147 / 736 / 2582 2481 10405 111 / 520 / 1581 1553 5940 253 / 1033 / 3507 3418 13998
Adult 155 / 583 / 1844 1725 7177 33 / 133 / 449 422 1821 369 / 1174 / 3117 2945 10083

SGNet [34] Elderly 139 / 374 / 995 905 3479 61 / 202 / 586 533 2144 392 / 1411 / 4243 4018 14698

Male 166 / 545 / 1620 1494 6120 38 / 141 / 449 416 1757 - / - / - - -
Female 146 / 583 / 1876 1768 7236 33 / 138 / 478 455 1976 - / - /- - -

Child 73 / 157 / 360 273 881 43 / 173 / 457 415 1184 158 / 296 / 566 509 1293
Adult 72 / 167 / 390 303 993 17 / 40 / 93 70 223 187 / 356 / 697 554 1292

BiTraP-NP [40] Elderly 63 / 110 / 208 142 360 33 / 73 / 166 120 407 162 / 351 / 760 586 1572

Male 78 / 161 / 341 247 740 19 / 46 / 105 76 253 - / - / - - -
Female 64 / 157 / 385 307 1030 16 / 40 / 97 78 255 - / - / - - -

Table 4: One sided Mann-Whitney U Test p-values. Statistically significant p-values (p < 0.05) are in bold.

JAAD PIE TITAN

Demographics MSE MSE MSE
Method Compared 0.5s / 1.0s / 1.5s 0.5s / 1.0s / 1.5s 0.5s / 1.0s / 1.5s

Child|Adult 0.64 / 0.028 / 0.002 0.58 / 0.42 / 0.24 0.84 / 0.12 / 0.008
BiTraP-D [40] Elderly|Adult 0.64 / 1.00 / 1.00 5e-78 / 2e-68 / 3e-55 2e-23 / 2e-18 / 9e-18

Male|Female 0.01 / 0.05 / 0.22 0.48 / 0.40 /0.21 - / - / -

Child|Adult 0.73 / 0.02 / 0.002 0.53 / 0.23 / 0.10 1.00 / 0.71 / 0.09
SGNet [34] Elderly|Adult 0.21 / 1.00 / 1.00 9e-76 / 1e-65 / 3e-54 5e-27 / 9e-34 / 7e-20

Male|Female 0.01 / 0.04 / 0.05 0.15 / 0.10 / 0.23 - / - / -

Child|Adult 0.49 / 0.02 / 0.002 0.54 / 0.24 / 0.21 1.00 / 0.94 / 0.31
BiTraP-NP [40] Adult|Elderly 0.10 / 0.98 / 1.00 8e-93 / 8e-88 / 5e-81 9e-23 / 1e-23 / 9e-24

Male|Female 0.005 / 0.01 / 0.02 0.28 / 0.27 / 0.11 - / - / -

that the p-values progressively decrease as the prediction horizon
increases (and thus the prediction problem inherently gets harder).

One part of our results that does not support our claim is that
all models perform very well on elderly pedestrians over the JAAD
dataset. We hypothesized that this had to do with the fact that in
JAAD, only pedestrians that were close to the on-board camera
are labeled with age and gender information (roughly 25%). Since
the unlabeled pedestrians are further away, they naturally have
lower error values. We thought that training on the large amount of
unlabeled pedestrians had a significant impact on the performance
between labeled pedestrians groups. As a result, we retrained all
models on JAAD using only the labeled pedestrians, but found that
model performance on the elderly was still significantly better than

the other two age groups. This unusually good performance on
elderly pedestrians is not present in the JAAD training set. The
particularly accurate predictions of elderly pedestrian trajectories
in JAAD are likely the result of high levels of statistical noise in the
dataset.

3.2.2 Gender Bias. Model performance between men and women
is overall pretty similar. Although some of theMann-Whitney U test
p-values are statistically significant, the corresponding differences
in themeanMSEs are very small. TheMSE 1.5s % difference between
men and women is less than 15% on JAAD and less than 10% on
PIE for all models. Additionally, the Wasserstein distances between
genders are much smaller than the Wasserstein distances between
age groups, as shown in Figure 3. While historical data shows that
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Figure 3: Wasserstein distances for the MSE error distribu-
tions between different demographics. It’s important to note
once again that on JAAD, the performance of all three mod-
els is better on elderley than on adults.

male pedestrians are involved in far more vehicle casualties than
their female counterparts, the reasons behind this are not very clear.
Zhu et al. [42] found that the biggest reason for this disparity was
that men simply had greater fatality rates when involved in vehicle
collisions. Tolea et al. [32] looked at the walking speeds of men
and women, and found that while men on average walked slightly
faster than women, the difference was not statistically significant.
A better understanding of the reasons behind high male pedestrian
casualties will be required to see if this disparity will persist with
the widespread adoption of AVs.

3.3 Limitations
We have several limitations in our study. First off, we were unable
to evaluate on other popular trajectory prediction datasets, such as
ETH [25], UCY [19], or nuScenes [5], due to their lack of pedestrian
demographic labels. We encourage new dataset makers to include
pedestrian demographic information if possible, as potential biases
in models trained using these datasets can lead to serious real-world
consequences.

Additionally, the three datasets we use only have pedestrian
labels for age and gender. Ideally, we would have also liked to
study biases in other demographic factors as well, such as race
or income. To our knowledge, no datasets designed for trajectory
prediction label pedestrians with this information. However, we
understand that this information may be difficult to obtain due to
privacy concerns.

Also, the performance of all models on TITAN is overall pretty
poor, as shown in Table 3. This is likely due to the fact that the
TITAN dataset is only annotated at a frequency of 10 hz. With
our current implementation details, models only have 5 frames to
observe on TITAN (compared to 15 frames on both JAAD and PIE),
making the prediction task much harder. Comparing model perfor-
mance across different demographics may not give us much insight
when the trajectory predictions are all fairly inaccurate. We tried
transfer learning on TITAN using pretrained models from JAAD

and PIE, but this did not have much effect on the final prediction
accuracy.

Finally, the biggest limitation of our study is that the models
are all trained on biased data, meaning that we cannot properly
distinguish the dataset bias from the algorithmic bias. Creating
unbiased datasets to train the models on will be necessary in order
the gain a deeper understanding of the algorithmic biases.

3.4 Future Work
We have several future tasks planned ahead of us. Firstly, there are
several models/variations of models that we have not yet tested
(BiTraP-GMM, SGNetCVAE , and PIEtraj ). We plan on testing these
models very shortly. Also, we will continue to refine our evaluation
metrics. We are thinking of switching all MSE calculations to the
mean absolute percentage error (MAPE) so that pedestrians close to
the camera have similar error magnitudes compared to pedestrians
further away. For multimodal models, we will look into alternatives
to the standard best-of-20 approach. Additionally, we will attempt
to create an unbiased dataset to train the models on so that we
can properly distinguish the dataset bias from the algorithmic bias.
Finally, once we gain a deeper understanding of the algorithmic
biases, we will explore methods for mitigating these biases.

4 CONCLUSION
In this paper, we tested two state-of-the-art pedestrian trajectory
prediction models for disparities in their performance between
age and gender. In addition to the mean MSE, we also used the
Mann-Whitney U test and the Wasserstein distance to compare
performance across different demographics. We found that both
models perform worse on children and the elderly compared to
adults. We found no clear difference between genders. In future
work, we will continue to test more models, refine our evaluation
metrics, further differentiate the dataset bias and algorithmic bias,
and explore methods for mitigating bias.
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